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ABSTRACT 

In August 2015, the AER-D campaign made use 

of the FAAM research aircraft based in Cape 

Verde, and targeted mineral dust. First results will 

be shown here. The campaign had multiple 

objectives: (1) lidar dust mapping for the 

validation of satellite and model products; (2) 

validation of sunphotometer remote sensing with 

airborne measurements; (3) coordinated 

measurements with the CATS lidar on the ISS; (4) 

radiative closure studies; and (5) the validation of 

a new model of dustsonde. 

 

1 INTRODUCTION 

From 6 to 25 August 2015, the FAAM BAe-146 

research aircraft was based in Praia on the 

Santiago island (Cape Verde). A ground-based 

site with several types of instruments was 

established at the base airport, including two sun-

photometers (PREDE-POM01 and CIMEL 

CE318-NEDPS9 dual-polarization). Additional 

sun-photometer measurements were available 

through the permanent AERONET station Cabo 

Verde in Sal Island. A number of dustsondes of a 

new type [1] were also launched from Sal. 

In this season, mineral dust transport from the 

Sahara is frequent (see Figure 1). Sixteen research 

flights were carried out, 10 of which targeted the 

role of dust as primary heterogeneous ice nuclei 

(ICE-D campaign). Six more flights, described in 

this paper and listed in Table 1, 

 

 

 

 Figure 1. Yearly cycle of aerosol optical depth and 
Ångstrom exponent, as derived from 20 years 
AERONET observations (1994-2013) at Sal, Cape 
Verde. 
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Figure 3. Flight B920 overvi
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validation of SKYNET and AERONET ground-

based sunphotometer retrievals of columnar 

aerosol microphysical properties, and in particular 

the size-distribution [5]. The track for these flights 

was confined within a small area, and the airplane 

sampled the atmosphere at a series of levels 

within the dust layer (to measure in situ 

properties) as well as above (to provide a lidar 

overview of the scene). As an example, Figure 3 

compares the CATS L2 products with the scene 

depicted by the airborne lidar, showing great 

consistency. 

5 RADIATIVE CLOSURE, DUST 

PROPERTIES, AND NEW MODEL 
DUSTSONDES 

In this presentation, we will also show first results 

concerning our radiative closure studies, the 

detailed characterization of dust properties, and 

the comparison of the airborne data with the new 

dustsondes. 

6 CONCLUSIONS 

AER-D has been a very successful campaign, 

despite relying on a small number of flights. The 

measurements provide insight on the vertical 

structure of the Saharan Air Layer and on its 

microphysical properties; they provide a small but 

detailed dataset on the dust spatial distribution, 

designed for satellite and modeling cal/val 

exercises; and they provide in situ and remote 

sensing information for the validation of CATS 

retrievals, sunphotometer retrievals, and the 

measurements from the new model of dust sondes. 

The data analysis is still preliminary at this stage 

but progress is being made quickly and we 

anticipate a number of publications in the years to 

come. 
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